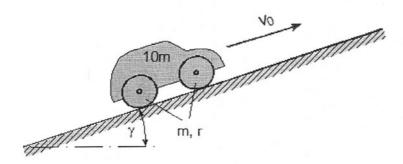
(Mustoloson)

Name:		Matr.Nr.:		
Fachhochschule Do FB Maschinenbau		Prof. DrIng. Stefan Gössner Modulprüfung Dynamik		
Aufgabe	Stichwort	max.Punkto	e Punkte	
1.	Mucho	20		
2.	Fahrzeug an Steigung	30		
3.	Hängeförderer	30		
Σ		80		


3. Ha	angeforderer 30
Σ	80
Bearbeitungszeit: 80 min	erlaubte Hilfsmittel: Formelsammlung, Rechner
	tstift. Lassen Sie die Blätter zusammengeheftet und ben Sie die Lösungen in den jeweils dafür folg!
1 . Kreuzen Sie von den nach keine, eine oder mehrere richti	folgenden Aussagen nur die Richtigen an. Es sind ge Aussage(n) möglich.
Geschwindigkeit	gelassener Stein hat kurz vor dem Aufprall die 14 m/s 50 km/h
	s Rad der Masse 10 kg und der Geschwindigkeit senergie
c. Ein ebenes System mit 4 Loslager besitzt den Freih	
1.	r Kiste auf horizontalem Boden hängt ab von asse 💢 Gewicht 💢 Bodenbelag
	10 s eine frei hängende Last von 100 kg mit eit 10 m hoch. Die Leistung beträgt □ 9.81 kW
f. Das Massenträgheitsmom Morehachse Masse	nent hängt ab von der enverteilung im Körper Körperform
	nötigt zur Fahrt in einer ebenen Kurvedes Radius 10 m 10 km/h die Haftungskraft 10 kN 130 kN
	it der Erde um ihre eigene Achse beträgt .16 * 10^{-5} 1/s 7.27 * 10^{-5} 1/s
i. Ein Rad mit dem Durchme	esser 1 m bewegt sich mit 10 km/h entlang des Weges

von 10 m. Das Rad

X hat die Drehzahl 0.9 1/s hat die Drehzahl 1.0 1/s hat die Drehzahl

53 1/min macht 3.2 Umdrehungen

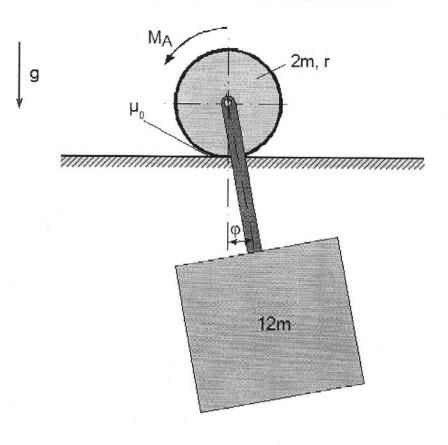
2. Ein Fahrzeug besitzt die Anfangsgeschwindigkeit v_0 und legt antriebs- und reibungslos die Strecke s auf der Steigung mit dem Neigungswinkel γ zurück.

Geg: m = 50 kg, $\gamma = 30^{\circ}$, $v_0 = 60 \text{ km/h}$, r = 75 cm, s = 20 m

- a. Vergleichen Sie die Geschwindigkeit v des Fahrzeugs nach dem Weg s unter Verwendung des Energiesatzes, wenn
 - a. die Räder als rotatorische Massen berücksichtigt werden.
 - β. die R\u00e4der nicht als rotatorische Massen ber\u00fccksichtigt werden und deren Masse dem Gesamtfahrzeug zugeschlagen wird.
- b. Welche Beschleunigung erfährt das Fahrzeug im ersten Fall?
- c. Welchen Gesamtweg s_{ges} legt das Fahrzeug im ersten Fall bis zum Stillstand zurück?

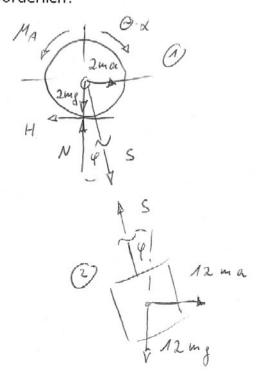
a) Energiesche
wit
$$v_0 = r \cdot \omega_0$$
; $v = r \cdot \omega$; $\theta = \frac{7}{2} \omega r^2$
 Δ) $\frac{1}{2} \cdot 12 \omega \cdot v_0^2 + 2 \cdot \frac{1}{2} \theta \cdot w_0^2 = 12 \omega_0^2 \cdot \sin V + \frac{1}{2} \cdot 12 \omega_0^2 + 2 \cdot \frac{1}{2} \theta \omega^2$
 $\frac{13}{2} \omega v_0^2 = 12 \omega_0^2 \cdot \sin V + \frac{13}{2} \omega v_0^2$
 $v = \sqrt{v_0^2 - \frac{24}{13}} SS \cdot \sin V = \frac{9.83 \text{ m}}{3}$ (10)

b)
$$a(4) = \frac{dv}{ds} \cdot \frac{ds}{dt} = \frac{4}{2} + \frac{24}{13} \cdot \frac{8 \sin x}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}$$


$$a(4) = -\frac{12}{13} \cdot 8 \cdot \sin x = -4.53 \cdot \frac{1}{8}$$

c)
$$S(t_n) = v_0 t_n + \frac{4}{2}at_n^2 = Sgen$$

$$v(t_n) = v_0 + a \cdot t_n = 0$$


$$Sgen = -\frac{v_0^2}{a} + \frac{4}{2}\frac{v_0^2}{a} = \frac{13}{24}\frac{v_0^2}{8 \cdot slu8} = \frac{30.7 \text{ m}}{8 \cdot slu8}$$

 $\bf 3$. Das Modell eines Hängeförderers besteht aus einer angetriebenen, zylindrischen Rolle und einer an der Rollenachse hängenden Last

Geg: $M_A = 200 \text{ Nm}, m = 10 \text{ kg}, r = 20 \text{ cm}$

- a. Welche Beschleunigung erfährt das System?
- b. Um welchen Winkel ϕ wird das Gehänge ausgelenkt ?
- c. Welche Stabkraft wirkt im Ghänge?
- d. Welcher Haftungskoeffizienten μ_0 ist unter den gegebenen Umständen mindestens erforderlich?

03. Feb. 2009 Fachhochschule Dortmund Prof. Dr.-Ing. Stefan Gössner Seite 5 Modulprüfung Dynamik FB Maschinenbau a) @ E Fx = 2 ma - H + S. sin 9 = 0 2 fy = N - 2 mj - S. cos 4 = 0 EMO = MA - G.X - H.r = 0 (3) 2 = - S. sin 9 + 12 ma = 0 27y = S. cos9 - 12mg = 0 mit x = 1 (2m) r2 S. sin 9 = 12 ma ; S. cos 9 = 12 mg H = 14 ma MA - mar - 14 mar = 0 $\alpha = \frac{M_A}{15 \text{ m r}} = 6.67 \frac{\text{m}}{\text{S}^2}$ b) fan 4 = \frac{a}{8} => \quad 9 = 34.2° () S = 12 m /a2 + g2 = 1,424 KD d) H = Mo.N 14 ma & po (2 mg + 12 mg) po = 0.68