FB Maschinenbau Modulprüfung Dynamik	Sep. 2009 Seite 1
Aufgahe Stichwort max Punkte I	
Adigabe Stichwort maxin unite	Punkte
1. Fahrzeugbewegung 25	
2. Bowlingkugel 30	
3. Masse-Rollen-Seil 25	
Σ 80	

erlaubte Hilfsmittel: Formelsammlung, Rechner

Bitte verwenden Sie keinen Rotstift. Lassen Sie die Blätter zusammengeheftet und geben Sie nur diese ab. Schreiben Sie die Lösungen in den jeweils dafür vorgesehenen Bereich. *Viel Erfolg!*

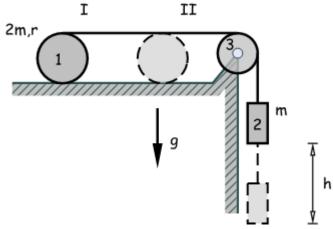
1. Ein Fahrzeug mit einer maximalen konstanten Beschleunigung von $a_{\rm I}$ und einer maximalen konstanten Verzögerung von $a_{\rm II}$ soll aus dem Stand auf seine Höchstgeschwindigkeit v_{max} beschleunigt und anschließend sofort wieder auf Stillstand abgebremst werden.

Geg:
$$a_I = 2 \text{ m/s}^2$$
, $a_{II} = -4 \text{ m/s}^2$, $v_{max} = 180 \text{ km/h}$

- a) Welche Beschleunigungszeit t_I und Verzögerungszeit t_{II} wird benötigt.
- b) Ermitteln Sie den Gesamtweg sqes.

Bearbeitungszeit: 80 min

c) Zeichnen qualitativ Sie das a/t, v/t und s/t-Diagramm.


Fachhochschule Dortmund FB Maschinenbau Prof. Dr.-Ing. Stefan Gössner Modulprüfung Dynamik 24. Sep. 2009 Seite 2 2 Eine Bowling-Kugel (Masse m, Radius r) wird ohne Rotation mit der Anfangsgeschwindigkeit v_0 horizontal auf die Bahn geworfen. Zwischen Kugel und Bahn herrscht der Reibungskoeffizient μ . Zunächst gleitet die Kugel und geht irgendwann in eine reine Rollbewegung über.

Geg:
$$m = 8 \text{ kg}, r = 12 \text{ cm}, v_0 = 3 \text{ m/s}, \mu = 0.15$$

- a) Schneiden Sie die Kugel frei und tragen alle Kräfte an.
- b) Ermitteln Sie die Gleichungen für Beschleunigung und Winkelbeschleunigung.
- c) Nach welchem Weg beginnt die Kugel mit der reinen Rollbewegung?

Hinweis: Nehmen Sie alle Bewegungsgrössen der Kugel nach rechts an.

Fachhochschule Dortmund FB Maschinenbau Prof. Dr.-Ing. Stefan Gössner Modulprüfung Dynamik 24. Sep. 2009 Seite 4 3. Die zylindrische Seiltrommel 1 ist mittels eines Seiles, das über eine masselose Umlenkrolle 3 läuft, mit einer Masse 2 verbunden. Aus der Ruhelage I heraus durchläuft das Körpersystem die Stellung II, in der die Seiltrommel 1 genau eine Umdrehung vollführt hat.

- a. Welche Absenkung *h* erfährt die Masse 2?
- b. Welche Geschwindigkeit v_1 und Winkelgeschwindigkeit ω_1 hat die Seiltrommel in der Stellung II?

Geg: $m = 500 \, g, \, r = 10 \, cm; \, g = 9.81 \, m/s^2$

Fachhochschule Dortmund FB Maschinenbau Prof. Dr.-Ing. Stefan Gössner Modulprüfung Dynamik 24. Sep. 2009 Seite 6