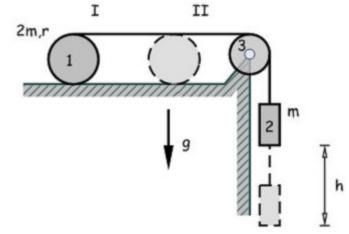
Name.	Mau .NI		
Fachhochschule Dortmund FB Maschinenbau	Prof. DrIng. Stefan Gössner 23. S Modulprüfung Dynamik		23. Sep. 2010 Seite 1
Aufgabe	Stichwort	max.Punkte	Punkte
1.	Masse-Rollen-Seil	35	
2.	Bowlingkugel	20	
3.	Fahrzeugbewegung	25	
Σ		80	
- · · · · · · · · · · · · · · · · · · ·	1 1 1 1116 111	, ,	

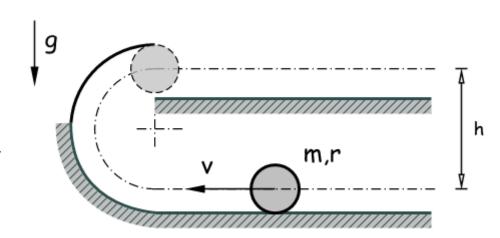

Bearbeitungszeit: 80 min erlaubte Hilfsmittel: Formelsammlung, Rechner

Bitte verwenden Sie keinen Rotstift. Lassen Sie die Blätter zusammengeheftet und geben Sie nur diese ab. Schreiben Sie die Lösungen in den jeweils dafür vorgesehenen Bereich. *Viel Erfolg!*

 $\mathbf{1}$. Die zylindrische Seiltrommel 1 ist mittels eines Seiles, das über eine Umlenkrolle 3 (Masse 2, Radius r/2) läuft, mit einer Masse 2 verbunden. Aus der Ruhelage I heraus durchläuft das Körpersystem die Stellung II, in der die Seiltrommel 1 genau eine Umdrehung vollführt hat.

Geg:
$$m = 500 g$$
, $r = 10 cm$, $g = 9.81 m/s^2$

Namo



Matr Nr .

- a. Welche Absenkung h erfährt die Masse 2?
- b. Welche Seilkräfte S_1 und S_2 wirken links und rechts der Rolle 3?

Fachhochschule Dortmund
FB Maschinenhau

Prof. Dr.-Ing. Stefan Gössner Modulprüfung Dynamik 23. Sep. 2010 Seite 2 **2.** Welche Geschwindigkeit *v* benötigt die Bowlingkugel der Masse *m*, um, ohne den Kontakt zur Kreisbahn zu verlieren, in der oberen Stellung anzukommen ?

Geg: m = 5 kg, r = 10 cm

Fachhochschule Dortmund FB Maschinenbau Prof. Dr.-Ing. Stefan Gössner Modulprüfung Dynamik 23. Sep. 2010 Seite 4 $\bf 3$. Fahrzeug $\it A$ fährt mit konstanter Geschwindigkeit an Fahrzeug $\it B$ vorbei. Zu diesem Zeitpunkt beschleunigt Fahrzeug $\it B$ konstant aus der Ruhelage heraus in dieselbe Richtung bis zum Erreichen der Maximalgeschwindigkeit $\it v_B$, um dann mit jener Geschwindigkeit weiter zu fahren.

Geg:
$$v_A = 90 \text{ km/h}, v_B = 100 \text{ km/h}, a_B = 1.9 \text{ m/s}^2$$

- a. Nach welcher Zeit hat Wagen B den Wagen A eingeholt?
- b. Welchen Einholweg benötigt Wagen B?
- c. Zeichnen Sie qualitativ das zugehörige s(t), v(t), a(t) Diagramm für beide Fahrzeuge.

Fachhochschule Dortmund
FB Maschinenbau

Prof. Dr.-Ing. Stefan Gössner Modulprüfung Dynamik 23. Sep. 2010 Seite 6