
Mat.Nr.:	Name:

Aufgabe	max. Punkte	Punkte
1. mechanische Struktur	16	
2. Seil / Masse / Rolle - System	32	
3. Fahrwerksmodell	32	
Σ	80	

Aufgabe 1: mechanische Struktur

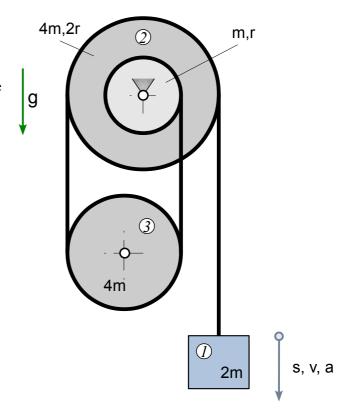
Bestimmen Sie für die abgebildeten Struktur

- a) den Gesamtfreiheitsgrad F
- b) grafisch die Momentanpole der Glieder 3 und 4
- c) die Zeit, die Kurbel 1 benötigt, um während einer Umdrehung von der Drehzahl $n_0=1\frac{1}{s}$ konstant auf $n_1=2\frac{1}{s}$ beschleunigt zu werden.

a) Freiheitsgrad F	
c) Zeit t	

Aufgabe 2: Seil / Masse / Rolle - System

Das dargestellte mechanische System wird aus der Ruhelage heraus sich selbst überlassen. Körper 2 besteht aus einer kleinen Seiltrommel und einer damit fest verbundenen Seilrolle.


Bestimmen Sie

- a) den Hubweg des Mittelpunkts von Rolle 3 in Abhängigkeit von *s*.
- b) Die Winkelgeschwindigkeit der Rolle 3 in Abhängigkeit von *v*.
- c) Die Bewegungsgleichungen der Masse 1.

Geg: m, r

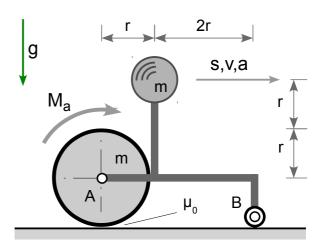
Hinweis: Wenn die Ergebnisse von a) und b) nicht vorliegen, arbeiten Sie bitte mit

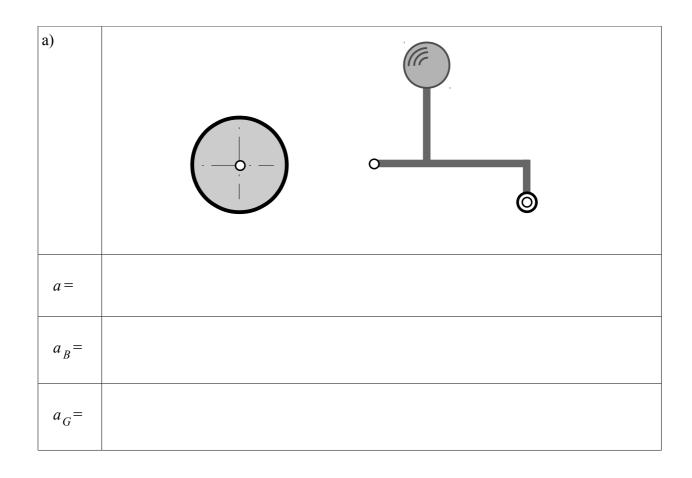
$$s_3 = \frac{s}{4}$$
 und $\omega_3 = \frac{1}{2} \frac{v}{r}$ weiter.

$s_3(s)=$		
$\omega_3(v)=$		
s(t) = v(t) = a(t) = a(t)		

FH Dortmund	Klausur Dynamik	Prof. DrIng. S. Gössner
FB Maschinenbau	WS 2010/2011	31.01.2012

FH Dortmund	Klausur Dynamik	Prof. DrIng. S. Gössner
FB Maschinenbau	WS 2010/2011	31.01.2012


Aufgabe 3: Idealisiertes Fahrwerk eines landwirtschaftlichen Fahrzeugs.


Die Masse m des Fahrwerk ist in der dargestellten Punktmasse konzentriert. Die Drehmassen des Antriebsstrangs sind auf einen zylindrischen Körper der Masse m reduziert. Auf diesen wirkt das Antriebsmoment M_4 . Das Stützrad B ist masselos.

Geg:
$$m, r, M_A = \frac{5}{8} mgr, \mu_0 = \frac{4}{5}$$

Ges:

- a) Freikörperbild von Antriebsrad und Fahrgestell.
- b) Beschleunigung a des Fahrzeugs aufgrund des Antriebsmoments M_4 .
- c) Grenzbeschleunigung a_B , bei der das Vorderrad B abhebt.
- d) Grenzbeschleunigung a_G , bei der das Hinterrad zu gleiten beginnt.

FH Dortmund	Klausur Dynamik	Prof. DrIng. S. Gössner
FB Maschinenbau	WS 2010/2011	31.01.2012

FH Dortmund	Klausur Dynamik	Prof. DrIng. S. Gössner
FB Maschinenbau	WS 2010/2011	31.01.2012