
FH Dortmund	Klausur Dynamik	Prof. DrIng. S. Gössner
FB Maschinenbau	SS 2012	17.09.2012

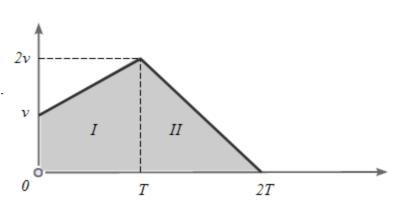
Mat.Nr.: Name:	Mat.Nr.:
----------------	----------

Aufgabe	max. Punkte	Punkte
1. mechanische Struktur	8	
2. kinematische Analyse	16	
3. Seil / Masse / Rolle - System	24	
4. Fahrwerksmodell	32	
Σ	80	

Aufgabe 1: mechanische Struktur

- Bestimmen Sie für die abgebildete Struktur
 a) den Gesamtfreiheitsgrad Fb) grafisch die Momentanpole der Glieder 3 und 4

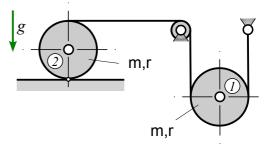
FH Dortmund
FB Maschinenbau


Klausur Dynamik SS 2012

Prof. Dr.-Ing. S. Gössner 17.09.2012

Aufgabe 2: kinematische Analyse

Bestimmen Sie aus dem gegebenen v/t-Diagramm eines Fahrzeugs dessen zurückgelegten Gesamtweg *s*.


Geg: v, T

Aufgabe 3: Seil / Masse / Rolle - System

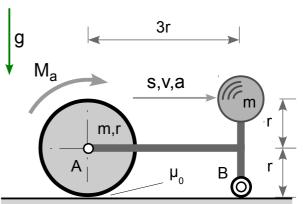
Das dargestellte mechanische System wird aus der Ruhelage heraus sich selbst überlassen. Das Seil und die kleine Umlenkrolle sind dabei als masselos und die Bewegung der zylindrischen Rollen als reibungsfrei anzunehmen. Ermitteln Sie über den Energieerhaltungssatz

- a) die Geschwindigkeit des Mittelpunkts von Rolle 1 in Abhängigkeit von ihrem zurückgelegten Weg s.
- b) Die Bewegungsgleichungen des Rollenmittelpunkts 1.

Geg: m, r

v(s)=		
s(t) = v(t) = a(t) = a(t)		

FH Dortmund	Klausur Dynamik	Prof. DrIng. S. Gössner
FB Maschinenbau	SS 2012	17.09.2012


Aufgabe 4: Idealisiertes Fahrwerk eines Baufahrzeugs.

Die Masse m des Fahrwerk ist in der dargestellten Punktmasse konzentriert. Die Drehmassen des Antriebsstrangs sind auf einen zylindrischen Körper der Masse m reduziert. Auf diesen wirkt das Antriebsmoment M_4 . Das Stützrad B ist masselos.

Geg:
$$m, r, M_a = \frac{5}{16} mgr, \mu_0 = \frac{4}{5}$$

- a) Freikörperbild von Antriebsrad und Fahrgestell.
- b) Beschleunigung a des Fahrzeugs aufgrund des Antriebsmoments M_a .
- c) Grenzbeschleunigung a_G , bei der das Hinterrad zu gleiten beginnt, sowie das zugehörige Antriebsmoment.

a)	A 2 B
a=	
$a_G^{}=$	

FH Dortmund	Klausur Dynamik	Prof. DrIng. S. Gössner
FB Maschinenbau	SS 2012	17.09.2012