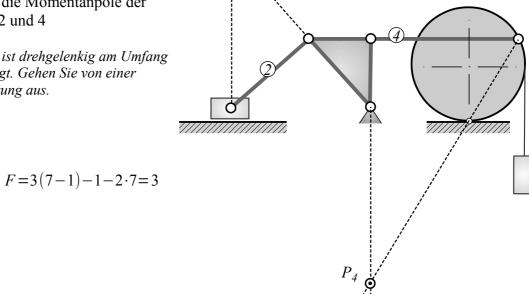
FH Dortmund	Klausur Dynamik	Prof. DrIng. S. Gössner
FB Maschinenbau	WS 2012/13 - Lösung	29.01.2013

Mat.Nr.:	Name:
----------	-------

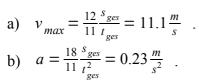

Aufgabe	max. Punkte	Punkte
1. mechanische Struktur	10	
2. kinematische Analyse	20	
3. Seil / Masse / Rolle - System	24	
4. Fahrwerksmodell	26	
Σ	80	

Aufgabe 1: mechanische Struktur

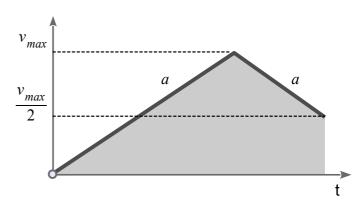
Bestimmen Sie für die nebenstehende Struktur

- a) den Gesamtfreiheitsgrad F
- b) grafisch die Momentanpole der Glieder 2 und 4

Hinweis: Glied 4 ist drehgelenkig am Umfang des Rades befestigt. Gehen Sie von einer reinen Rollbewegung aus.


Aufgabe 2: kinematische Analyse

Ein Fahrzeug beschleunigt aus dem Stillstand heraus mit a bis zur Maximalgeschwindigkeit v_{max} und verzögert anschließend mit demselben Beschleunigungsbetrag a bis zur Hälfte der Maximalgeschwindigkeit v_{max} .

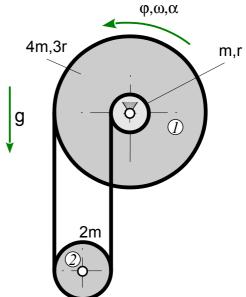

Ermitteln Sie bei gegebener Gesamtzeit und bekanntem Gesamtweg

- a) die Maximalgeschwindigkeit v_{max}
- b) die Beschleunigung a.

Geg:
$$s_{ges} = 733 \text{ m}$$
, $t_{ges} = 72 \text{ s}$

b)
$$a = \frac{18}{11} \frac{s_{ges}}{t_{ges}^2} = 0.23 \frac{m}{s^2}$$

Aufgabe 3: Seil / Masse / Rolle - System


Das dargestellte mechanische System wird aus der Ruhelage heraus sich selbst überlassen. Die obere große und kleine Seiltrommel sind fest miteinander verbunden. Das Seil ist dabei als masselos und die Bewegung der zylindrischen Rollen als reibungsfrei anzunehmen. Ermitteln Sie über den 4m,3r

- a) die Winkelgeschwindigkeit von Rolle 1 in Abhängigkeit vom Drehwinkel φ.
- b) Die rotatorischen Bewegungsgleichungen von 1.

Geg: m, r

$$\omega_2 = \omega$$
$$v_2 = 2r\omega$$

Energieerhaltungssatz:

$$\omega^2(\varphi) = \frac{16}{55} \frac{g}{r} \varphi$$

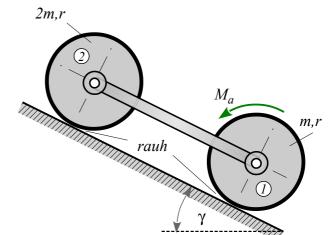
$$\varphi(t) = \frac{4}{55} \frac{g}{r} t^2$$

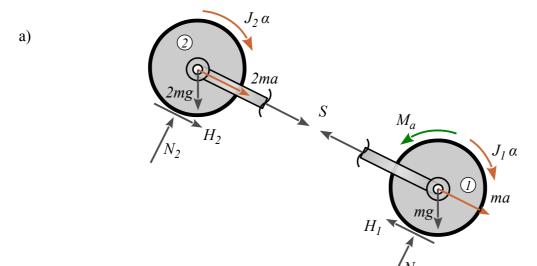
$$\omega(t) = \frac{8}{55} \frac{g}{r} t$$

$$\omega(t) = \frac{8}{55} \frac{g}{r} t$$
$$\alpha(t) = \frac{8}{55} \frac{g}{r}$$

FH Dortmund	Klausur Dynamik	Prof. DrIng. S. Gössner
FB Maschinenbau	WS 2012/13 - Lösung	29.01.2013

FH Dortmund	Klausur Dynamik	Prof. DrIng. S. Gössner
FB Maschinenbau	WS 2012/13 - Lösung	29.01.2013


Aufgabe 4: Idealisiertes Fahrwerk.


Das Fahrwerk besteht aus einem masselosen Stab und zwei massebehafteten Rädern I und 2 von gleichem Radius r. Auf das hintere Rad wirkt ein Antriebsmoment M_A .

Geg:
$$m, r, \gamma = 30^{\circ}, M_a = 3 \text{mgr}$$

Ges:

- a) Freikörperbild beider Räder.
- b) Gleichgewichtsbedingungen beider Räder.
- c) Beschleunigung a des Fahrwerks.
- d) Kraft S im Stab.

b)
$$\text{Rad1:} \quad \begin{array}{l} \sum F_x \, \equiv \, ma - S - H_1 + mg \sin \gamma \, = \, 0 \\ \\ \sum M_0 \, \equiv \, M_a - \frac{1}{2} m r^2 \frac{a}{r} - H_1 r \, = \, 0 \\ \\ \sum F_x \, \equiv \, 2 \, ma + S + H_2 + 2 \, mg \sin \gamma \, = \, 0 \\ \\ \sum M_0 \, \equiv \, -\frac{1}{2} (2 \, m) r^2 \frac{a}{r} + H_2 r \, = \, 0 \end{array}$$

c)
$$a = \frac{1}{3}g$$

$$S = -2 mg$$

FH Dortmund	Klausur Dynamik	Prof. DrIng. S. Gössner
FB Maschinenbau	WS 2012/13 - Lösung	29.01.2013