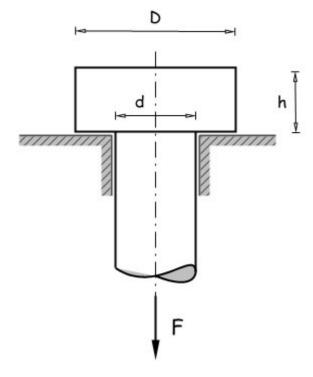
Name:Matr.Nr.:Fachhochschule Lippe und Höxter
FB Produktion und WirtschaftProf. Dr.-Ing. Stefan Gössner
Modulprüfung TM202. Feb. 2005
Seite 1AufgabeStichwortmax.PunktePunkte

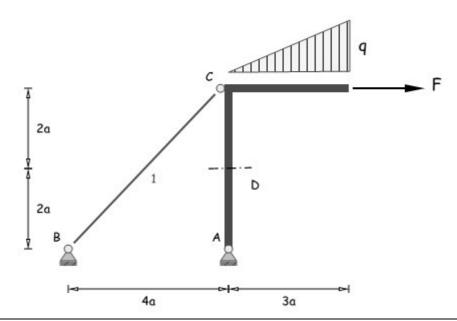
Aufgabe	Stichwort	max.Punkte	Punkte
1.	Zugbolzen	12	
2.	Rahmen	18	
3.	Balken/Stäbe	20	
4.	Pendel	20	
5.	Jojo	20	
Σ		90	


Bearbeitungszeit: 90 min erlaubte Hilfsmittel: Formelsammlung, Rechner

Bitte verwenden Sie keinen Rotstift. Lassen Sie die Blätter zusammengeheftet und geben Sie nur diese ab. Schreiben Sie die Lösungen in den jeweils dafür vorgesehenen Bereich.

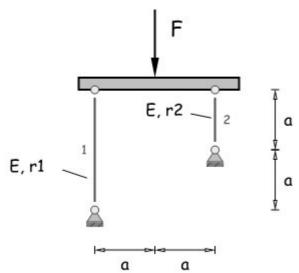
Viel Erfolg!

 $oldsymbol{1}$. Ein Zugbolzen mit dem Kopfdurchmesser extstyle extstyle D, der Kopfhöhe h und dem

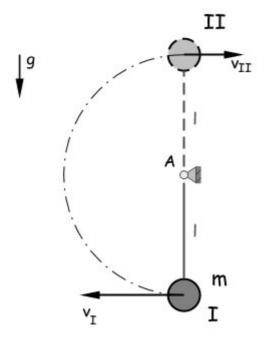

Schaftdurchmesser $\emptyset d = 10 \text{ mm}$ wird durch die Kraft F = 10 kN belastet. Welche Werte sind für D und h zu wählen, wenn die zul. Scherspannung 60 N/mm^2 und die zul. Flächenpressung 20 N/mm^2 nicht überschritten werden darf?

- $2 \, {}_{\mbox{\tiny L}}$ Ein Rahmen ist mittels eines Festlagers und eines Stabes statisch bestimmt gelagert. Er wird durch eine vertikale Streckenlast und eine horizontale Kraft F belastet. Ermitteln Sie
- a) Lagerkraft A und Stabkraft S.
- b) Schnittgrössen N, Q, Mb im Rahmenpunkt D.

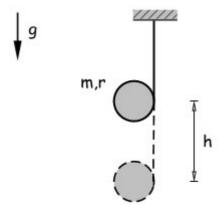
Geg: F, a, q = 6 F/a


Δ.,-

A _X =	
A _y = S=	
S=	
N=	
Q= M _b =	
M _b =	


- 3. Ein horizontaler, starrer Balken ist auf zwei vertikalen, elastischen Stäben mit Kreisquerschnitten verschiedener Radien, unterschiedlicher Länge und gleichen Materials gelagert.
- a) Wie ist das Radienverhältnis r_1/r_2 zu wählen, damit der mittig belastete Balken auch nach der Belastung horizontal bleibt?
- b) Welchen Radius r_1 muss der längere Balken bei einer Knicksicherheit $S_K = F_K/F = 2$ erhalten?

Geg: $F = 500 \text{ N}, a = 40 \text{ cm}, E = 10^5 \text{ N/mm}^2$


4. Mit welcher Anfangsgeschwindigkeit v_I muss das gezeichnete Seilpendel mit der Punktmasse m nach oben schwingen, damit das Pendel die obere Stellung II mit gerade noch gespanntem Seil durchläuft?

Geg: m = 5 kg, l = 20 cm; $g = 9.81 \text{ m/s}^2$

- 5. Das Jojo wird hier als zylindrische Seiltrommel aufgefasst, die in der gezeichneten Stellung aus der Ruhelage heraus losläuft. Nach einer gewissen Zeit durchläuft das Jojo eine um h tieferliegende Position. (Zur Vereinfachung sei das Seil als jederzeit vertikal ausgerichtet angenommen.)
- a) Welche Geschwindigkeit hat der Jojo-Mittelpunkt in der unteren Position?
- b) Welche Winkelgeschwindigkeit und Drehzahl hat das Jojo dort?
- c) Welche Seilkraft wirkt in der unteren Stellung?

Geg: m = 200 g, h = 50 cm; r = 2 cm; $g = 9.81 m/s^2$

