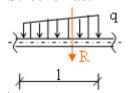

Formelsammlung Statik

Kräftesystem

$$\sum_{\mathbf{r}} F_{\mathbf{r}} = 0$$


$$\sum_{\mathbf{r}} F_{\mathbf{p}} = 0$$
zentrales K.S.

$$\sum_{i} F_{i} = 0$$

$$\sum_{i} F_{i} = 0$$

$$\sum_{i} M_{i} = 0$$
allgemeines K.S.

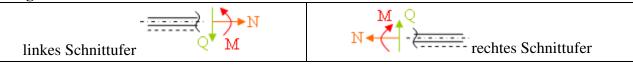
Streckenlast

- 1. Streckenlast als "Fläche" auffassen.
- 2. Resultierende ist so groß wie "Fläche".
- 3. Resultierende läuft durch "Flächenschwerpunkt".

Freiheitsgrad (ebene Strukturen) $f_{ges}=3 \cdot (n-1) - \sum r_i (allgemein)$ $f_{ges}=2 \cdot k - s - \sum r_{gestell} (Fachwerk)$

Haftung und Reibung

$$\begin{split} H &\leq \mu_0 \cdot N &; \quad R = \mu \cdot N \, (Coulomb) \\ S_2 &\leq S_I \cdot e^{\mu_0 \alpha} &; \quad S_2 = S_I \cdot e^{\mu \alpha} \, (Eytelwein) \end{split}$$


Gesamtschwerpunkt

	Massenschwerpunkt	Flächenschwerpunkt	Linienschwerpunkt
x _s	$\frac{\sum (m_i \cdot x_{si})}{\sum m_i}$	$\frac{\sum (A_i \cdot x_{si})}{\sum A_i}$	$\frac{\sum (l_i \cdot x_{si})}{\sum l_i}$
y _s	$\frac{\sum (m_i \cdot y_{si})}{\sum m_i}$	$\frac{\sum (A_i \cdot y_{si})}{\sum A_i}$	$\frac{\sum (l_i \cdot y_{si})}{\sum l_i}$

Flächen und Linienschwerpunkte

Fläche/Linie	A/l	x _s /y _s	Fläche/Linie	A/l	x _s /y _s
y os h	$A = \frac{ah}{2}$	$x_{S} = \frac{2}{3} A,$ $y_{S} = \frac{h}{3}$	y S h	$A = \frac{h}{2} (a + b)$	$y_{S} = \frac{h}{3} \cdot \frac{a+2b}{a+b}$
h a	A=ah	S liegt im Schnittpunkt der Diagonalen	y r a s	$A = \frac{r^2}{2} (2\alpha - \sin 2\alpha)$	$x_{S} = \frac{s^{3}}{12A} =$ $= \frac{4}{3} r$ $\frac{\sin^{3} \alpha}{2\alpha - \sin 2\alpha}$
y a S x	A=αr ²	$x_{S} = \frac{2}{3} r$ $\frac{\sin \alpha}{\alpha}$	y s x	$A = \frac{\pi}{2} r^2$	$x_{S} = \frac{4r}{3\pi}$
y o S x	l=2α · r	$x_S = r \frac{\sin \alpha}{\alpha}$	y S x	l=π · r	$x_S = \frac{2}{\pi} \cdot r$

Schnittgrößen

